Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

4-Phthalimidobenzoic acid N, N-dimethylformamide solvate

Zu-Pei Liang,* Jian Li and Ben-Yu Huang

Department of Chemistry and Chemical Engineering, Weifang University, Weifang 261061, People's Republic of China

Correspondence e-mail:
zupeiliang@yahoo.com.cn

Key indicators

Single-crystal X-ray study
$T=294 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.043$
$w R$ factor $=0.127$
Data-to-parameter ratio $=12.3$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]The crystal structure of the title compound, $\mathrm{C}_{15} \mathrm{H}_{9} \mathrm{NO}_{4}$-$\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NO}$, comprises 4-phthalimidobenzoic acid and N, N dimethylformamide (DMF) molecules, which are held together by an $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond. The dihedral angle between the phthalimide group and the benzene ring is 53.5 (2) ${ }^{\circ}$.

Comment

Phthalimides and N -substituted phthalimides are an important class of compounds because of their interesting biological activities (Lima et al., 2002; Orzeszka et al., 2000; Bailleux et al., 1993). Phthalimides are also used as starting materials and intermediates for the syntheses of alkaloids (Couture et al., 1998) and pharmacophores (Couture et al., 1997).

(I)

The asymmetric unit of (I) contains one 4-phthalimidobenzoic acid molecule and one DMF molecule (Fig. 1). The phthalimide group is essentially planar, with a mean deviation of 0.027 (2) \AA. The dihedral angle between the phthalimide group and the benzene C9-C14 ring is $53.5(2)^{\circ}$. The DMF molecule is planar, within 0.006 (2) \AA, for all non-H atoms. The crystal structure is stabilized by an $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond which connects the benzoic acid and DMF molecules and by a $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond which links the DMF molecules (Fig. 2 and Table 1).

Experimental

A mixture of phthalimide (0.1 mol) and 4-aminobenzoic acid (0.1 mol) in acetic acid (40 ml) was refluxed for 3 h . After cooling, filtration and drying, 4-phthalimidobenzoic acid was obtained (m.p. $562-563 \mathrm{~K}$). This compound (10 mg) was dissolved in acetic acid / DMF ($2.5: 1 \mathrm{v} / \mathrm{v} ; 12 \mathrm{ml}$) and the solution was allowed to evaporate at room temperature. Colourless single crystals of the title compound were formed after 20 d .

Received 29 August 2006
\qquad

organic papers

Crystal data

$\mathrm{C}_{15} \mathrm{H}_{9} \mathrm{NO}_{4} \cdot \mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NO}$
$M_{r}=340.33$
Triclinic, $P \overline{1}$
$a=5.926$ (2) A
$b=8.398$ (3) \AA
$c=17.518$ (7) \AA
$\alpha=95.986(7)^{\circ}$
$\beta=90.837$ (7) ${ }^{\circ}$
$\gamma=109.706(6)^{\circ}$

Data collection

Bruker SMART CCD area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan (SADABS; Bruker, 1997)
$T_{\text {min }}=0.966, T_{\text {max }}=0.978$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.044$
$w R\left(F^{2}\right)=0.127$
$S=1.02$
2819 reflections
230 parameters
H -atom parameters constrained
$V=815.1(5) \AA^{3}$
$Z=2$
$D_{x}=1.387 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
$\mu=0.10 \mathrm{~mm}^{-1}$
$T=294$ (2) K
Block, colourless $0.34 \times 0.30 \times 0.22 \mathrm{~mm}$

4122 measured reflections 2819 independent reflections 1777 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.024$ $\theta_{\text {max }}=25.0^{\circ}$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.065 P)^{2}\right] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.003 \\
& \Delta \rho_{\max }=0.16 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.17 \mathrm{e}^{-3} \\
& \text { Extinction correction: } \text { SHELXL97 } \\
& \text { Extinction coefficient: } 0.084(7)
\end{aligned}
$$

Table 1
Hydrogen-bond geometry ($\mathrm{A},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O3-H3 $\cdots \mathrm{OS}^{\mathrm{i}}$	0.82	1.76	$2.573(3)$	169
C17-H17A $\cdots 5^{\mathrm{ii}}$	0.96	2.52	$3.269(4)$	135

Symmetry codes: (i) $x+1, y+1, z$; (ii) $x+1, y, z$.

H atoms were positioned geometrically $(\mathrm{C}-\mathrm{H}=0.93-0.96$ and $\mathrm{O}-\mathrm{H}=0.82 \AA$) and refined as riding, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$ or $1.5 U_{\text {eq }}$ (methyl C, O).

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL.

References

Bailleux, V., VallCe, L., Nuyts, J. P. \& Vamecq, J. (1993). Biomed. Pharmacother. 47, 4634-4637.
Bruker (1997). SADABS, SMART, SAINT and SHELXTL (Versions 5.10). Bruker AXS Inc., Madison, Wisconsin, USA.
Couture, A., Deniau, E., Grandclaudon, P. \& Hoarau, C. (1998). J. Org. Chem. 63, 3128-132.
Couture, A., Deniau, E., Woisel, P. \& Grandclaudon, P. (1997). Synthesis, 63, 1469-1445
Lima, L. M., Castro, P., Machado, A. L., Frage, C. A. M., Lugniur, C., Moraes, V. L. G. \& Barreiro, E. J. (2002). Bioorg. Med. Chem. 10, 3067-3073.

Figure 1
The molecular structure of (I), with 30% probability displacement ellipsoids.

Figure 2
The packing of (I), viewed along the a axis. Dashed lines indicate $\mathrm{O}-$ H $\cdots \mathrm{O}$ hydrogen bonds.

Orzeszka, A., Kaminsaka, B., Orzesko, G. \& Stareerciak, J. (2000). Farmaco, 55, 619-623
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

